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Lie Group Theory of the Bessel Equation of the 
First Kind of Integral Order 
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We discuss the Bessel differential equation of the first kind of integral order 
and the associated functions from a Lie-group-theoretical background. All the 
familiar properties of the Bessel equation and functions are obtained. The analytic 
methodology developed in the study can easily be adapted to the study of some 
other special functions of mathematical physics. 

INTRODUCTION 

Recurrence relations and special functions of  mathematical physics 
(Courant and Hilbert, 1953; Morse and Feshback; 1953; Rainville, 1960; 
Lebedev, 1965) have properties which, for the most part, are derived on 
the basis of  the methods of  classical analysis. An alternative to this mode 
of  study of  functions of  mathematical physics is a group-theoretic approach 
(Vilenkin, 1968). This approach elucidates the geometric background of  the 
special functions, such as rotations, translations, and the like. The group- 
theoretic approach to the derivation of  the properties of the special functions 
simplifies considerably the complicated mathematical manipulations of 
power series and integral representations which characterize the study of 
the classical theory of the special functions. The following is the correspon- 
dence between the classical and group-theoretic approaches to the study 
of the special functions of  mathematical physics: 

(i) The addition theorem of  the special functions becomes multiplica- 
tion laws for the elements of  the group of  symmetry involved. 
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(ii) The differential equations satisfied by special functions are 
obtained as limiting cases of the addition theorems, or as expressions of 
the fact that multiplication of group elements in the neighborhood of the 
identity (unit) element furnishes group elements whose properties are in 
close proximity to the parameters of the elements multiplied. 

(iii) The integral relationships among classical special functions now 
derive from Frobenius' orthogonality relations for the matrix elements of 
irreducible representations as generalized for Lie groups by means of 
Hurwitz's invariance integers. 

(iv) Lie groups can be considered as limiting cases of others, and this 
furnishes further relations between them. 

For example, the Euclidean group of the plane can be obtained as a 
limit of the group of rotations in three-space, and so the elements of the 
representations of the former (Euclidean group of the plane) are limits of 
the representations of the latter group. While the former group relates to 
the bessel equation of the first kind, of integral order, and the associated 
Bessel functions, the latter group is related to the Jacobi functions. Clearly, 
elements of certain group representations arespecified special functions of 
mathematical physics. 

In this paper, we obtain the Bessel equation of the first kind of integral 
order n, and the associated Bessel (special) functions from the elements of 
the group representations of the Euclidean group E2 for the plane. This 
approach, the Lie-group-theoretic approach, provides a good alternative to 
the conventional series method due to Frobenius. The technique can be 
extended to the study of other differential equations of mathematical physics 
and their associated special functions once applicable symmetry groups are 
found as well as their desired representations. A number of properties of 
such differential equations and the associated special functions can be 
obtained group-theoretically. 

The rest of the paper is organized as follows: 
In Section 1, the properties of the Euclidean group E2 of the plane 

and Frobenius' method of induced representations are discussed. In Section 
2, the complete representations of E2 are applied to obtain the Bessel 
functions Jm of the first kind and of integral order, m. By the use of the 
general addition theorem, some well-known recurrence relations for the 
Bessel functions Jm are obtained. 

In Section 3, a Helmholtz partial differential equation satisfied by each 
matrix element of the representation of the translation operator of E2 is 
obtained. The Bessel differential equation of the first kind of integral order 
m, as well as its generating function, is obtained. In Section 4, we present 
concluding remarks. 
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1. PROPERTIES OF THE EUCLIDEAN GROUP E2 OF THE 
PLANE AND THE FROBENIUS METHOD OF 
INDUCED REPRESENTATION OF E2 

The Euclidean group E2 of the plane is the set of  all transformations 
of  the plane, of  the form 

T(a )R(O)  (1.1) 

where R(O)  is a rotation of  the plane about the origin by an angle O, and 
T(a) is a translation of  the plane by the vector a. The coordinates (x', y') 
of  an arbitrary point (x, y) following the transformation (1.1) are given by 

(x' ,  y ')  = T (a )R(O){ (x ,  y)} (1.2) 

i.e., 

x ' = x  cos O - y  sin O+a 

y ' = x  sin O+y cos O+ b (1.3) 

o r  (;:) ( o.0 (x) (:) 
,s n0 oos0,,,,+,o, (1.4) 

where a and b are the components of  a. The three parameters of  E2 are 
thus a, b, and 0, and the infinitesimal generators of  the Lie group of  the 
continuous group E2 or of  the corresponding Lie algebra are 

La, Lb, Lo 

These are calculated in the differential form as follows: 
Replace 0, a, b by their infinitesimals 60, 8a, and 8b, respectively, to 

obta in  infinitesimal rotations and translations, namely: 

x'  = x cos 60 - y sin 60 + 8a 

y ' =  x sin 80 + y cos 6 0 + 8 b  (1.5) 

i.e., 

( x ) : (  x 
y'  x60 y / \ Sb ] 

as 8 0 ~ 0 .  Equations (1.6) give 

x'  - x = 6x = - ySO + 8a 

y '  - y = 6y = xSO + 6b 

8x Ox 8x 
- - =  -y ,  - - =  1, = 0 
oO Oa ob 

O0 Oy= x' ~ = 1 ,  OY=Ooa 

so that 

(1.6) 
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and 

Lo Ox 0 . Oy 0 0 0 
- ~ - -  - - = x - - - y - -  

O 0 0 x  O00y Oy Ox 

Ox 0 Oy 0 0 
L a -  

OaOx OaOy Ox 

ax 0 Oy a o 
F - (1.7) 

L b - o b  Ox Ob Oy Oy 

which are the three infinitesimal generators of the Lie group of  E2, in the 
differential form. 

A faithful matrix representation of the Euclidean group element can 
be obtained. This is done by associating with each point (x, y) in the plane 
a three-dimensional vector (x, y, 1). Under the transformation T(a)R(O),  
the point (x, y, 1) becomes (x', y' ,  1), 

' = si 0 cos 0 

0 

(1.8) 

are 

L a = = 

0 

Lb = ~ (0) = 0 

0 

Lo = ~ (0) = 0 

0 

(1.9) 

The matrix of  transformation denoted by M(O, a, b) is 

 o C~176 sin0 !) 
0 

The Lie algebra corresponding to the Lie group of E2 can be obtained by 
calculating the derivatives of  M ( O, a, b) with respect to the three parameters 
O, a, b around the identity. The infinitesimal matrix generators of  the algebra 
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The commutation relations are 

[L,,, Lb] = O, [L~, Lo] = --Lb 

[Lb, Lo] = -La (1.10) 

One notes that the general group element has been represented as the 
product  of  elements from two of  its subgroups, which are the rotation group 
and the translation group, with R(O) and T(a) as the operators. These do 
not commute. In the product  operation R(0)  T(a), T(a) translates the origin 
into the point with coordinates (a, b), while the second operation R(O) 
rotates this point (a, b) to the point with coordinates 

(a cos 0 - b  sin 0, a sin O+b cos 0) 

This is equivalent to the transformation 

T(Oa)g(o) 

where 0a denotes a vector a rotated by ~ Thus, 

R(O)T(a) = T(Oa)R(O) (1.11) 

While the subgroup of  translations is invariant, that of  rotations is not. The 
group, however, can be written as the product  of  a normal subgroup and 
a subgroup NH such that 

H f'l N =  {e} 

In other words, the group is a semidirect product group. We also note that 
the product  of  two group elements T(a)R(O) and T(a')R(O') is 

T(a)R(O) T(a ' )R(0 ' )  = T(a) T(Oa')R(O)R(O') 

= T ( a +  0a ' )g (0  + 0') (1.12) 

And, if R and S' are arbitrary rotations, and T(a) and T(b) arbitrary 
translations, we have 

RT(a)  = T(Ra)R 

T(a)RT(b) = T ( a +  Rb)RS 

where Ra denotes the vector a rotated by R. 
We now discuss Frobenius'  method of  induced representation 

(Frobenius, 1896-1899; Schur, 1905; Burnside, 1911). The method is amen- 
able to E2. It provides that the representation D of a group G with a 
subgroup N also provides a representation of  the subgroup N of G. The 
representation of  N may be reducible, however, even if that of  G, which 
is D, is irreducible. This is the case, since a subgroup may be invariant 
under the operators D(n) ,  n c N, but not under all the D(g), g ~ G. 
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We now apply Frobenius' method of induced representation to the 
T(a) subgroup of E2, which is normal, noting that this subgroup is also 
Abelian, so that the invariant subspace is one-dimensional. The irreducible 
representations of the translation subgroup T(a) are of the form 

exp(ip �9 a) 

where a is the translation vector and p is an arbitrary vector of the space 
that labels the representation. I f  D(a, R) ~ D(a, 0) is the total representation 
of E2, then D(a, I)  is reduced. It is expected that there are vectors ~b in 
the representation space H that satisfy 

D(a, I ) 0  = e'P'a@ (1.13) 

Consider a vector f(p)  selected from a vectorspace Hp. Then all the vectors 
of Hp are transformed by D(a, I)  according to the equation 

D(a, I ) ~  = e'P'a~ (1.14) 

so that for f(p)  e lip, we get 

D[a, I ] f (p)  = e'P'~f(p) (1.15) 

We assume that Ipl is fixed, so that f is a function of the direction ~b of p 
only, where 0---~b<2~r. The angle 0 is the polar angle of p. From 
D(a, I )f(p)  = eiP'~f(p), we see that D(a, I)  is a local operator that multiplies 
the value o f f  at each point p by exp(ip-a). Now, 

D(a,  0)f(~b) = e ipl'l cos(/3 - ~b)f(~b) 

= e"  . . . .  (~-6>f(~b) (1.16) 

with (/3 -4))  as the angle between p and a, with lal = ,  (Fig. 1), and Ipl =p. 
The angle/3 is that made by the line of action of a with an arbitrary vector 
p in lip, which labels the representation. The number p is an arbitrary 

W . , /  

Fig. 1 
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positive number and is the index of  the representation. Also, 

D(0, 0 ) f ( r  = f ( r  - 0) 

1017 

2. C O M P L E T E  M A T R I X  R E P R E S E N T A T I O N  O F  E2 

The complete representation of the element T(a)R(O) of  E2, for p ~ 0, 
is given by 

D(a,  O)f(r = [D(a,  0)D(0, 0 ) f ] r  

= D(a,  0){D(0, 0)}f( r  

= exp[iplal cos (B-  r D(0, O)f(r 
= exp[ipr cos(fl - r + 0)] f ( r  - 8) (2.1) 

There exists in a representation space a complete set of functions f .~  ( r  
satisfying the relation 

D(0, O)f.~ ( r  e-'"~162 (2.2) 

where the index a is there to indicate that there can be more than one 
function satisfying the above equation. If  there is only one function of f, 
we get D(0, O)f(r = f ( r  - 0). 

Putting r = 0 gives 

f~,~(-O) = e-"~ (2.3) 

We can drop the index a, to get 

f . ( -O)  = e-'"~ 

Let 0--> -0 ,  and we obtain 

f .(O)=e"~ 

We can replace O by r to obtain 

f . ( r  = e'"r (2.4) 

We choose as a normalization 

L ( 0 )  = i - " ( 2 ~ )  - ' /2  

Now that the f .  are normalized, the representation they define is unitary. 
Then, 

i-n 
f . ( r  = (2~r)1/2 e '"e~ (2.5) 
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The matrix elements of  the translation generators can be readily calcu- 
lated from the relation 

D(a,  O)f,, = E Ap(a, 0),..fro (2.6) 
m 

where the lhs is an operator D(a,  0) of G o n f . ,  and Ap(a, 0)m. is the matrix 
representing the operator D(a,  0), which is the translation operator of  the 
translation subgroup of  E2. 

Recall 
D(a,  O)f.(rp) = exp[ irp  cos(/3 - ~b + 0)] f .  (~b - 0) 

and 

with 

Hence, 

D(a,  O)f.(cb) = exp[ irp  cos(/3 - ~b)] f.(~b) 

1 
f~ (~b) = (z)'%r ' '/2 i-" el"* 

i - n  
_ _  i n t k  

D(a, 0)f. (~b)= exp[ irp  cos( /3-  ~b)] (2~r)1/2 e 

i-" exp[irp cos( /3-  ~b)] e i"6 
- (2or)U2 

We can drop the 1/'(2zr) 1/2 factor (no loss of  generality), to obtain 

D(a,  0)f. = exp[ i rp  co s ( f l -  ~b)] i -" exp(int~) 

i.e., 

D(a,  0)f~ = E  Ap(a, 0)m~fm 
m 

= exp[ irp  cos(B - ~b)] i -n exp(in~b) 

Use f~(~b) = i -" e i"* [on dropping the 1/(2r 1/2 factor], to obtain 

fm(qb) = i - m e  im~ 

so that 
A(a,  O)mnfm = ~,, A(a ,  O)mni -m  e imr 

m m 

i.e., 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

i-" exp(in~) exp[ ipr  cos(fl - Oh)] = Y A(a, 0)m.fm 
m 

= • A(a, 0)m.i -'~ exp(im~b) 
m 

(2.11) 

This shows that A(a, 0)m. is the coefficient of  i - m e  ira4' in the Fourier 
expansion of  

i -n exp[ ipr  cos(fl - ~b)] exp(int~) 
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In which case, 

i m-n  12r 
exp[irp cos(/i-~b)] exp[ i (n-m)~b]  d~b (2.12) A ( a ,  O)m n = 2r o 

We integrate the rhs by changing the variable of integration: 

r 

so that d~ =-d~b, and so 

Ap(a, 0)ran = ( -1)  m-" exp[i(n - m)/3] Jm-n (pr )  (2.13) 

whereby one identifies 

1 Io J m - ~ ( p r )  = 2~r e x p ( - i r p  sin ~) exp[i(m - n)~] d~ (2.14) 

This is a familiar integral representation of J m - n ( p r ) .  It follows that 

which is a familiar integral representation of the Bessel function of the first 
kind of integral order m. 

We next obtain the complete matrix representation Ap(a, 0),.n of 
D(a, 0). We recall that 

D(O,  O)f,,( dp ) = e-~"~ f~(  ~b ) = ei"~ i -n e -~~  

= ein(ep-o)i -n  

Then 

A(0, O)mnfn(flp) = ~  A(0, O)mn e -ra e ' ' '~ 
m m 

= i -n e in(~-~ (2.16) 

showing that A(0, O)m n is the coefficient of eim6i -m in the Fourier expansion 
of e ~"<~-~ in which case, 

im--n I02r 
A(0, 0)m. - 2~r exp[in(~b - 0)] d~b 

i m-n 
= e x p ( - i n O )  (2.17) 

2r 

The complete representation Ap(a, O)m n is now given, with the matrix 
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elements, as 

A,(a, 0)m~ = [ap(a, 0)Ap(0, O)]m. 

= ( -1 )  m-" exp(-irn/3) exp(in/3) Jm-,(pr)  exp(-inO) 

= ( -1 )  m-" exp(-im/3) Jm-,(pr)  exp[in(/3 - 0)] (2.18) 

where (r,/3) are the polar coordinates of a, such that lal =r ,  arg(a)=/3. 
We now obtain the power series of  a Bessel function of the first kind, 

of  integral order, Jm(a). Recall 

Ap(a, O)mn = ( - - 1 )  m - n  exp(-im/3 )Jm_.(pr) e in(g-~ 

The index p which labels the representation is irrelevant to the development 
of  a power series for Jm and its other properties. We therefore take p as 1. 
Consider the transformations by the vector a, parallel to the x axis of the 
plane, in order to obtain the power series for Jm. In this case the equation 

D(a,  O)f,, = Y~ Av(a, O)mnfm 
m 

becomes 

D ( a , O ) ~ , = Y ~ ( ' l ) m - "  e x p [ i ( n - m ) / 3 ] J m - , ( p r ) ~ m  (2.19) 
m 

(evaluated at p = 1, as suggested). Here lal = r = a. The polar angle o f  a is 
/3, and since a is parallel to the x axis of the plane, we have that 13 = 0. Hence, 

D(a,  0)~b, = Y~ (--1)m-"Jm_,(a)tpm (2.20) 
m 

of a distance a in the x direction can be written But a translation 
operationally as 

D(a,  0) = e aLo (by exponentiation) (2.21) 

where L~ is the corresponding generator of  the Lie algebra corresponding 
to the subgroup of  translation by the vector a. Since the generators are not 
linearly independent,  it is impossible to construct representations of  the 
Euclidean group /52 from the commutation relations: 

[La, Lb] = O, [La, Lo] = --Lb, [Lb, Lo] = La 

The method of  constructing irreducible representations for E2 is to calculate, 
first, the irreducible representations of  the Lie algebra. We need three 
independent generators other than L~, Lb, Lo. One is interested in unitary 
group representations. We try to find skew-Hermitian representations of 
the algebra. Consider the infinitesimal operators P+, P -  defined by 

P+ = L~ + iLb ; P -  = (-P+)* = La = iLb (2.22) 
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Recall the commutation relations of L,,, Lb, Lo, namely 

[Lo, L~] = -[L~,  Lo] = -Lb  

Now 

1021 

[ Lo, P+] = --Lb -- iLa = --( Lb + iLa) 

= - i ( L a  + iLb)  = - i P  § 

[ Lo, P-]  = iP-  

The Casimir invariant operator is 

p 2  = L ] + L 2 = p + p -  = p - p +  (2.23) 

with p2 commuting with La, Lb, and Lo. Therefore p2 is, if the representation 
is irreducible, a nonpositive real constant, which we denote by _p2; i.e., 

p2 = _p2, p # 0 (2.24) 

From L,  + iLb = P+, L~ - iLb = P- ,  we obtain 

1 1 
La =-~ ( P+ + P-) ,  Lb =-~z ( P + -  P -) 

Then 

D(a, 0)= exp(aL~)=exp(  a P + + P - ) ' ' 2  

= 2 Z(P++P-)~  
s=o S! 

~ 1  s! ( a )  s 

=s=o r=oS! r [ ( s - r ) !  (p+)r(p- )s -r  

=s=o ~ r=0 ~ r ! (s - -r ) !  ( P + ) ' ( P ' ) ' - r  (2.25) 

It is necessary at this stage to invoke group properties in order to ensure 
that the representation of the algebra should correspond to a representation 
of E2. The property to be invoked is that E2 has a compact subgroup which 
is the rotation group. The chosen parametrization, in which R(21r)=/,  
requires that the eigenvalue of Lo be in, where n is an integer, in order that 
e 2"n'L~ = I. We take ~O, as a normalized eigenvector of Lo satisfying 

LoO,, = -inO,, (2.26) 

There are two different cases: The first case is that for which p2 = 0, implying 

P+P-O,, = P-P+~b,, = 0 

so that 

( O. ,  P+ P -  qJ.) = -IP-~O.12 = o 
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in which case 

P-~bn =0 

and 
]p-~bn]u =p2 

We next define the normalized eigenvectors of Lo by 
p+ p -  

{~tn+ 1 m - - - -  {~n, ~tn--1 = -  {~tn 
P P 

The phases of ~.+1, On-1 can be fixed arbitrarily; these have been chosen 
so that the representations obtained will agree with the equation of the 
complete representation 

Ap(a, O)mn = (-1) m-n exp(-imfl)Sm_n(pr) exp[in(fl - 0)] 

We inductively define 

/ p + \ "  

which are again eigenvectors of Lo 

p -  m 

corresponding to the eigenvalues 

Similarly, P+6n = 0. 
For this case the complete representation is defined by ~bn which is 

one-dimensional and is of the rotation subgroup. This representation is of 
little interest. 

The second case is that in which p2 > 0. For all u in the domain of P+ 
and P-, we have that P+u and P-u are nonzero, otherwise p2 =0. We 
consider P+~bn. With this 

[ Lo, P+] = - i P  + 

gives 

Lo( P+ ~n) = P+ LoOn - iP+ ~n 

Using LeOn =-imOn, this becomes 

Lo(P+~n) = P+(-  inOn) - iP+On 

= - i ( n +  l)P+~b. 

indicating that P+~bn is an eigenvector of Lo, corresponding to the eigenvalue 
- i (n+  1). 

Similarly, P-~bn is an eigenvector of Lo corresponding to the eigenvalue 
- i ( n -  1). The nonnormalized eigenvectors P+O, P-~n satisfy 

[P+C'nl 2= P-P+ n) =p2 
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- i ( n  + m) and - i ( n  - m), respectively. We note that 

for m > O, and 

1023 

p_ 
--~]n+m=~n+m--1 
P 

for m ~ 1. One concludes that the eigenvectors Ore, m = n, n + 1, provide a 
complete definition of the Lie algebra by 

LoOm = - im~bm 

P+ Om = -P~bm+l 

P-~bm=p~bm_l, m = n , n + l  

This construction is independent of the choice of the eigenvector ~bn in 

Lod/n = -inch, 

for if another eigenvector of Lo had been chosen, the same sequence of 
eigenvectors would have been found. The eigenvectors of L0 are also 
nondegenerate. Degeneracy would lead to reducibility in representation. 
The representations are necessarily infinite-dimensional, since the eigen- 
vectors g'.~m defined by 

p -  m (7) 
cannot vanish for any value of m and are necessarily linearly independent. 

We now return to (2.25). Recall equation (2.6) and replace f ,  by 0,, 
to obtain 

D(a, 0)~b~ = E (-1)"-"Jr~-.(a)0m 
m 

In the special case of n = 0, we get 

D(a, 0) 0o = ~ (--1)mJm(a)~m 
m 

Relate this to (2.25) to obtain 

D(a, O) = ~. (-1)mJm(a)~m 
m 

1 ( 2 )  s 
=s=o ~ r=o ~ r ! ( s - r ) !  (p+),(p-)s-r  
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We recall  

1; 

with n = 0; i.e., 

o r ,  

p -  _ e +  
- - ~  = ~m-, ;  - - ~ m = ~ = + l  
P P 

P+Om = - -P~m+l  

Chukwumah 

e - ~ m  = P~m--1 ", 

F r o m  these we obta in  

( p+)r ( p-)'-'~o = ( -  1)r~bz,_s 

We substi tute this, to ob ta in  

~ ~ ( - 1 ) "  ( 2 )  s 
Y~,. (-1)mJm(a)Om = s=o r=o r l (s-r)[  02r-s 

c~ r r+s 
_ ( - 1 )  [a\  

,=o  s=o  r . s .  \ z /  

~ ( - 1 y / a V  +~ 
- - L L ~ / : /  0 , - s  (2.27) 

r=0 s=0 r . s .  \ A ]  

The series for  Jm is ob ta ined  by  equat ing the coefficients o f  ~b. on bo th  
sides o f  the identity. Two  cases arise, namely  

m > 0  and m < 0  

For  m -> 0, the te rms on the rhs for  which r -  s = m or  r = s + m give 
the desired result, which is the following: 

(_1)  s ( a ]  2s+m 

J,.(a) = s~=o s!(s + m)! \21 (2.28) 

For  m < 0, the te rms for  which s = r - m give the result  

,1 ,  (firm Jm(a)=(--1)m ,=0 ~ r ! ( r -m)!  

= ( - - 1 ) m s - r e ( a )  ( 2 . 2 9 )  

implying  that  J, .  and  J -m,  for  integral m. are l inearly dependen t  and  cannot  
be  combined  l inearly to give a general  solut ion o f  the Bessel differential 
equa t ion  o f  the first k ind  o f  order  m. These  power  series are convergent  for  
all values  o f  the argument .  
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We next look at the general addi t ion theorem and its implicat ions for 
the Bessel funct ion,  which are recurrence relations. The most  general addi- 
t ion theorem for  E2 is 

A ( a +  0 a ' +  Ot)rnn = ~  A ( a ,  0 ) m p A ( a '  , O')p n 

We can, wi thout  any loss o f  generality, put  0 = 0' = 0. Again  we assume a 
parallel to the x axis, since this can be achieved by a s imultaneous rotat ion 
o f  a and a'. We convenient ly  express the addi t ion theorem in Cartesian 
coordinates.  We write exp( - i /3 ' )  = c o s  f l ' - i  s in /T,  with cos fl'= a'/r', 
s i n / 3 ' =  b'/r', so that  

a'-  ib' 
c o s / 3 ' -  i s i n / 3 ' =  

r r 

Now,  

[ a ' -  ib']V-njp_n(r, ) 
A ( a ' , 0 ) v n = ( - 1 )  p - "L  r '  J 

with n = 0. Since a is parallel  to  the x axis, then fl = 0; a + a '  has componen t s  
r + a ' ,  b',  with lal = r. We note  that 

A(a, 0)m p = (-1)m-PJm_p(r) 

In  the special case o f  m = 0 (no loss o f  generality),  we obtain 

/ - ' -  ib,\V (rd-a'-R--ib'))'nJm(R)=~p~7~--)Jm_,(r,Jp(r') (2.30, 

with 

R2=(r+a')2+b'2; r'2=a'2+b '2 

and  summat ion  is over all integral n values o f  p. In  polar  coordinates ,  we 
parametr ize:  

r+a' b' 
- -  = cos B, - -  = sin B 

R R 

By De Moivre ' s  theorem we obtain  

. . . .  (cos B - i sin B) m = e - i ' ~  

so that  

becomes  

(r+aR-ib-") Jm(R)=~p \ r' ] Jm_p(r)Jp(r') 

e -imB~CR) = s exp(-ipfl')Jm_p(r)Jp(r') 
p 

(**) 
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with 

R 2 = ( r +  a ')2+ b '2 = r2+ a ' 2 + 2 r a ' +  b'2 

= r 2 + 2 r r  ' cos f l '+  a '2+ b '2 

= r 2 + 2 r r  ' cos f l '+  r '2 

In the special case of b '=  0, corresponding to the product  of  translations 
along the x axis, equation (**) reduces to 

Jm(a  + a')  = ~. Jm_p(a )Jp (a ' )  (2.31) 
P 

Similarly, if a ' =  0, the identity is, on replacing b' with b, 

( a - ib ) m 2 2 1 / 2  
(a~+b-~l/~ Jm((a +b ) )=E(-1)PJm_p(a)Jp(b) (2.32) 

P 

Equations (2.31) and (2.32) lead to well-known recurrence relations for the 
Bessel functions, which we obtain as follows: 
Differentiate equation (2.31) with respect to a '  and evaluate at a ' = 0 ,  to 
obtain 

J 'm(a)  = J m - l ( a )  - Jm+l(a)  (2.33) 

Similarly, equation (2.32) is differentiated with respect to b and evaluated 
at b = 0, to obtain 

2m 
- -  Jm( a ) = Jm- l (  a )Jm+l( a ) (2.34) a 

3. PARTIAL DIFFERENTIAL EQUATION OF H E L M H O L T Z  FOR 
A(a)=--A(r, fl) FOR EUCLIDEAN GROUP 22 FOR THE PLANE 

Consider the identity 

A(a, 0)A(a', 0) = A(a+ a', 0) (3.1) 

where 
A(a, 0)m. = ( -1 )  m-n e i~n-m)~Jm- . (pr )  

(evaluated at fl = 0, p = 1) 

=(-1 )m-nJm_n(r  ) (3.2) 

and 

The Helmholtz equation arises from the above identity [equation (3.1)]. 
Differentiate equation (3.1) with respect to a '  and b' and evaluate the results 
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at a'= 0 t o  o b t a i n  

OA 
O-a (a) = A(a)La (3.4) 

b(b)  = a(a)Lb (3.5) 

Alternatively, from D(a,  0) = e aLo (exponentiation), so that A(a, 0)m. = e aL,, 
we obtain 

05 
= La e aL~ = La5 

0a 
Similarly, 

OA 
ob ALb 

Differentiate again with respect to a and b, respectively, and apply the 
Casimir operator L2.,+L~ = _ p 2 = - 1  (no loss of  generality), as follows: 

#A o (A(a))L. 
0a 2 - 0a 

02A 0 

ob --~ = ~a (a(a))Zb 
to obtain 

o~A + O~---a = a(a)L~ + A(a)L~ 
Oa 2 ob 2 

= (Z.~ + L~)A(a) 

= -p2A(a) = -A(a)  
Hence, 

d2A . d2A 
0a 2 (a) +~-~ (a) + A(a) = 0 (3.6) 

which is the two-dimensional Helmholtz equation satisfied by each matrix 
element of the representation of the translation operator D(a, 0), with the 
matrix element of the representation as A(a, 0)m.. In polar coordinates (r, fl) 
for the translation vector a, we obtain 

A,, +l A, +~ A,# + A(r , /3 )=0  (3.7) 

or in terms of  the Laplace operator 

V2A(r, fl) +A(r, /3) = 0 (3.8) 

From the Helmholtz differential equation we deduce, in a straightforward 
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manner, the Bessel differential equation of the first kind of integral order 
m, Jm(r), with [al = r: Recall 

v~a(r,  ~ ) + a ( r , / 3 )  = 0 

and 

Ap(a, 0)m. = ( -1 )  ~-"  exp[i(n - m)/3] Jm-,(pr) 

with p = 1, as specialized earlier. Putting/3 = 0 ,  lal --- r ,  we obtain 

j~ (r l+l  j . ( r )+(1  m2 r ----~] Jm(r) = 0 ( 3 . 9 )  

which is the Bessel differential equation of the first kind of order m in 
Jm(r), with m an integer. 

We can also easily deduce some recurrence relations by combining 

2Jrm(a) = Jm_l(Cl)--Jm+l(a) 

and 

2m Jm(a) = Jm-l(a) + J,.+l(a) 
a 

to obtain 

with lal = a = r; and 

J m . , ( r ) = ~ ( r )  m +--J~(r) (3.10) 
r 

t m Jm+l(r)=-Jm(r)+--Jm(r) (3.11) 
r 

Equations (3.10) and (3.11) are well-known recurrence relations for the 
Bessel functions of  interest. 

By adding equations (3.10) and (3.11), we obtain another recurrence 
relation: 

J . . - l ( r )  + J , .+, ( r )  = 2m Jm(r)  (3.12) 
r 

The two relations (3.10) and (3.11) provide the factorization of  the Bessel 
equation. 

Finally, we work out the generating function for the Bessel equation 
from the matrix representation Ap(a, 0)m, of  D(a,  0). W e  recall that 
Ap(a, 0)m, have been defined as the coefficients o f  i - "  e i"~ i n  the Fourier 
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expansion ofexp[ir  cos(fl - ~b)] i-" exp(in~). In the special case off l  = zr/2, 
for which A(a, 0),.. = i"-"J,._.(r),  this property gives 

i-" e irsin r e~,,~ = ~ i" -"J , ,_ , (r ) i -"  e i"~" (3.13) 
m 

Substitute z = e i~, so that 

z--z -I z+z -I 

sin 4, - - - ,  cos 4, = -  
2i 2 

to get 

i-" [" Z--z-l\ 
exp~ ,r---~t ] exp(inch) = ~.,, i"-"J, ,_.  ( r) i -"  exp(irn~b) 

i.e., 

. Z -- z-l\ 

i-" exp lr--~t ] exp(in~b) = i-" •,, Jm-n(r)i-" exp(im~b) 

o r  

[. z -  z - ' \  
exp~,r 2i ] exp(in4,) = ~  J,,_.(r)i  -m exp(im~b) 

Put n = 0, a special case, to obtain 

[ 
exp~Ir----~l ]=~mJm(r)zm (3.14) 

This result has been demonstrated for [z[ = 1. The series converges for other 
values of  z and can be extended to these values by analytic continuation. 
The lhs of  equation (3.14) is called the generating function of the Bessel 
function J,,(r). The result of  this section can be extended to complex values 
of  the arguments of the Bessel functions and for complex transformations 
of  vectors a and a'. 

4. SUMMARY 

We have been able to obtain the Bessel differential equation of the first 
kind of integral order, the related Bessel functions, their generating function, 
and some recurrence relations from a Lie-group-theoretic approach, the 
group of  transformations being the Euclidean group E2 for the plane. In 
addition, we have obtained a two-dimensional Helmholtz differential 
equation which is satisfied by each matrix element of the representation of 
the translation operator of  E2. Some interesting information can be gained 
from this differential equation. 



1030 Chukwumah 

One notes that the Lie-group-theoretic approach to the study of the 
special functions of mathematical physics is a consistent alternative to the 
method of power series and integral representations which characterizes 
the study of the classical theory of these special functions. The group- 
theoretic approach elucidates the geometric background of the special 
functions such as rotations and translations. 

The analytic methodology thus developed in the study of the Bessel 
equation of the first kind of integral order and the related special functions 
and formulas can easily be applied to the study of some other special 
functions. For example, one can study the Euclidean group E3 of rotations 
and translations in three dimensions. Applying the method of Frobenius 
already outlined, or that of Miller (1964), to relate the translation operator 
to the group representations of the elements of the group of translations, 
one obtains the spherical Bessel functions, the Neumann functions, and 
the spherical Hankel functions as well as their properties, Lie-group- 
theoretically. Results obtained group-theoretically compare well with those 
obtained by a different method by Friedman and Russek (1954) and by 
Danos and Maximon (1965). The associated Laguerre polynomials and the 
various properties of these functions can be derived group-theoretically 
from the irreducible unitary representation property of the group that has 
an algebra defined by the quantum mechanical position and momentum 
operators. It will be shown that the representation matrix elements are 
eigenfunctions of the two-dimensional harmonic oscillator problem and are 
closely related to hydrogen atom radial wave functions. A set of partner 
functions for the group representation can also be constructed. These partner 
functions are eigenfunctions of the harmonic oscillator problem. The trans- 
formation properties of the partner functions under the group can give rise 
to certain properties of Hermite polynomials. 

It is expected that representation coefficients of somewhat more com- 
plex Lie groups than those of the simple ones we have studied and discussed 
will play an important role in the development of new special functions of 
mathematical physics, which, for want of an appropriate terminology, can 
be styled as transcendental special functions. We shall discuss some of these 
possibilities in a subsequent paper. 
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